SEMiX 151GD066HDs

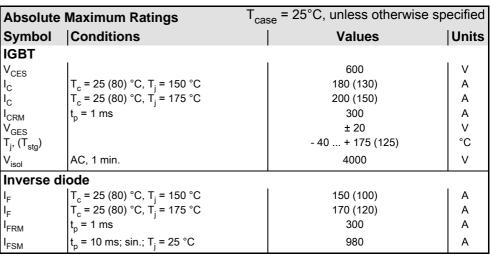
SEMiX[®]13s

Trench IGBT Modules

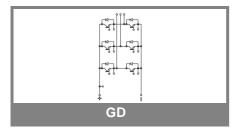
SEMIX 151GD066HDs

Target Data

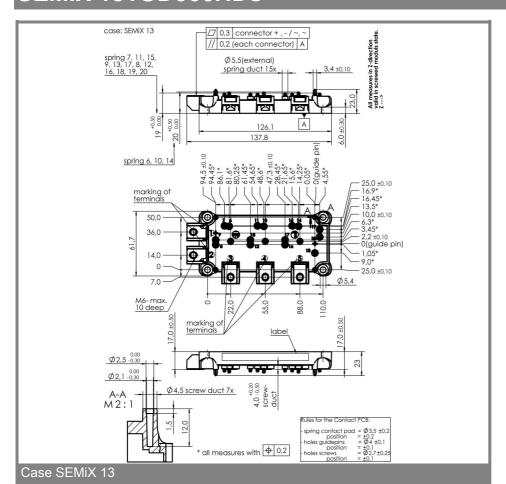
Features

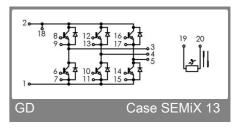

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient

Typical Applications


- Matrix Converter
- Resonant Inverter
- Current Source Inverter

Remarks


- Case temperatur limited to T_C=125°C max.
- Product reliability results are valid for T_i=150°C
- SC data: $t_p \le 6 \mu s; V_{GE} \le 15 V; T_j$ = 150°C; V_{CC} = 360 V



-	T	- 25°C		hamilaa a	:f:d
		ase = 25°C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
IGBT					
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 4.8 \text{ mA}$		5,8		V
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_{j} = 25$ () °C			0,25	mA
$V_{CE(TO)}$	$T_j = 25 (150) ^{\circ}C$		0,9 (0,85)	1 (0,9)	V
r_{CE}	V _{GE} = 15 V, T _j = 25 (150) °C		3,7 (5,7)	6 (8)	mΩ
$V_{CE(sat)}$	I _{Cnom} = 150 A, V _{GE} = 15 V,		1,45 (1,7)	1,9 (2,1)	V
	T _j = 25 (150) °C, chip level				
C _{ies}	under following conditions				nF
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz				nF
C _{res}					nF
L _{CE}					nH
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C		0,7 (1)		mΩ
$t_{d(on)}/t_r$	V _{CC} = 300 V, I _{Cnom} = 150 A				ns
$t_{d(off)}/t_{f}$	V _{GE} = ±15V				ns
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = 4 \Omega, T_j = 150 °C$		4 (6)		mJ
Inverse diode					
$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V; T_j = 25 (150) $^{\circ}$ C, chip level		1,4 (1,4)	1,6	V
$V_{(TO)}$	T _j = 25 (150) °C		1 (0,85)	1,1	V
r _T	$T_{j} = 25 (150) ^{\circ}C$		2,7 (3,7)	3,3	mΩ
I _{RRM}	$I_{Fnom} = 150 \text{ A}; T_j = 25 (150) ^{\circ}\text{C}$				Α
Q_{rr}	di/dt = A/μs				μC
E _{rr}	V _{GE} = -15 V				mJ
	characteristics				
$R_{th(j-c)}$	per IGBT			0,3	K/W
R _{th(j-c)D}	per Inverse Diode			0,5	K/W
$R_{th(j-c)FD}$	per FWD				K/W
$R_{th(c-s)}$	per module		0,04		K/W
Temperature sensor					
R ₂₅	$T_c = 25 ^{\circ}C$		5 ±5%		kΩ
B _{25/85}	$R_2 = R_1 \exp[B(1/T_2-1/T_1)]$; T[K];B		3420		K
Mechanical data					
M_s/M_t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm
w			290		g
	L .				

SEMiX 151GD066HDs

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.